Abstract The “quantum complexity” of a unitary operator measures the difficulty of its construction from a set of elementary quantum gates. While the notion of quantum complexity was first introduced… Click to show full abstract
Abstract The “quantum complexity” of a unitary operator measures the difficulty of its construction from a set of elementary quantum gates. While the notion of quantum complexity was first introduced as a quantum generalization of the classical computational complexity, it has since been argued to hold a fundamental significance in its own right, as a physical quantity analogous to the thermodynamic entropy. In this paper, we present a unified perspective on various notions of quantum complexity, viewed as functions on the space of unitary operators. One striking feature of these functions is that they can exhibit non-smooth and even fractal behaviour. We use ideas from Diophantine approximation theory and sub-Riemannian geometry to rigorously quantify this lack of smoothness. Implications for the physical meaning of quantum complexity are discussed.
               
Click one of the above tabs to view related content.