LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dijet impact factor in DIS at next-to-leading order in the Color Glass Condensate

Photo from wikipedia

Abstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our computation, performed in the framework of the Color Glass… Click to show full abstract

Abstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to $$ \mathcal{O} $$ O ($$ {\alpha}_s^2 $$ α s 2 ln(xf/xBj)), where xf is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider.

Keywords: color glass; leading order; impact factor; glass condensate; next leading

Journal Title: Journal of High Energy Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.