LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cosmology as a CFT1

Photo from archive.org

Abstract We show that the simplest FLRW cosmological system consisting in the homo- geneous and isotropic massless Einstein-Scalar system enjoys a hidden conformal symmetry under the 1D conformal group SL(2,… Click to show full abstract

Abstract We show that the simplest FLRW cosmological system consisting in the homo- geneous and isotropic massless Einstein-Scalar system enjoys a hidden conformal symmetry under the 1D conformal group SL(2, ℝ) acting as Mobius transformations in proper time. This invariance is made explicit through the mapping of FLRW cosmology onto conformal mechanics. On the one hand, we identify the corresponding conformal Noether charges, as combinations of the Hamiltonian scalar constraint, the extrinsic curvature and the 3D volume, which form a closed 𝔰𝔩 (2, ℝ) Lie algebra. On the other hand, this approach allows to write FLRW cosmology in terms of a AdS2 phase space and a Schwarzian action. Preserving this conformal structure at the quantum level fixes the ordering ambiguities in the Wheeler-de Witt quantization and allows to formulate FLRW quantum cosmology as a CFT1. We show that the CFT two-points correlator is realized as the overlap of the evolution in proper time of cosmological coherent wave-packets. In particular, the two-points function is built from a vacuum state which, although not conformally invariant, coincides with the cosmological vacuum annihilated by the scalar constraint. These results suggest new perspectives in classical and quantum cosmology, among which the possibility to apply the conformal bootstrap program to quantize cosmological backgrounds.

Keywords: cosmology; cosmology cft1

Journal Title: Journal of High Energy Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.