LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A gravitational action with stringy Q and R fluxes via deformed differential graded Poisson algebras

Photo from wikipedia

Abstract We study a deformation of a 2-graded Poisson algebra where the functions of the phase space variables are complemented by linear functions of parity odd velocities. The deformation is… Click to show full abstract

Abstract We study a deformation of a 2-graded Poisson algebra where the functions of the phase space variables are complemented by linear functions of parity odd velocities. The deformation is carried by a 2-form B-field and a bivector Π, that we consider as gauge fields of the geometric and non-geometric fluxes H, f, Q and R arising in the context of string theory compactification. The technique used to deform the Poisson brackets is widely known for the point particle interacting with a U(1) gauge field, but not in the case of non-abelian or higher spin fields. The construction is closely related to Generalized Geometry: with an element of the algebra that squares to zero, the graded symplectic picture is equivalent to an exact Courant algebroid over the generalized tangent bundle E ≅ TM ⊕ T∗M, and to its higher gauge theory. A particular idempotent graded canonical transformation is equivalent to the generalized metric. Focusing on the generalized differential geometry side we construct an action functional with the Ricci tensor of a connection on covectors, encoding the dynamics of a gravitational theory for a contravariant metric tensor and Q and R fluxes. We also extract a connection on vector fields and determine a non-symmetric metric gravity theory involving a metric and H-flux.

Keywords: poisson; graded poisson; geometry; action stringy; gravitational action

Journal Title: Journal of High Energy Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.