LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A New Polar Representation for Split and Dual Split Quaternions

Photo by flyinggoose76 from unsplash

We present a new different polar representation of split and dual split quaternions inspired by the Cayley–Dickson representation. In this new polar form representation, a split quaternion is represented by… Click to show full abstract

We present a new different polar representation of split and dual split quaternions inspired by the Cayley–Dickson representation. In this new polar form representation, a split quaternion is represented by a pair of complex numbers, and a dual split quaternion is represented by a pair of dual complex numbers as in the Cayley–Dickson form. Here, in a split quaternion these two complex numbers are a complex modulus and a complex argument while in a dual split quaternion two dual complex numbers are a dual complex modulus and a dual complex argument. The modulus and argument are calculated from an arbitrary split quaternion in Cayley–Dickson form. Also, the dual modulus and dual argument are calculated from an arbitrary dual split quaternion in Cayley–Dickson form. By the help of polar representation for a dual split quaternion, we show that a Lorentzian screw operator can be written as product of two Lorentzian screw operators. One of these operators is in the two-dimensional space produced by 1 and i vectors. The other is in the three-dimensional space generated by 1, j and k vectors. Thus, an operator in a four-dimensional space is expressed by means of two operators in two and three-dimensional spaces. Here, vector 1 is in the intersection of these spaces.

Keywords: split quaternion; split; dual split; polar representation

Journal Title: Advances in Applied Clifford Algebras
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.