LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple Positive Solutions of a Fourth-order Boundary Value Problem

Photo by theblowup from unsplash

We consider the nonlinear fourth-order semipositone boundary value problem $$\begin{aligned} u^{(4)}=f(t,u(t),u'(t)), \quad t \in (0,1), \end{aligned}$$u(4)=f(t,u(t),u′(t)),t∈(0,1),$$\begin{aligned} u(0)=u'(0)=u''(1)=u'''(1)=0, \end{aligned}$$u(0)=u′(0)=u′′(1)=u′′′(1)=0,where $$f: [0,1] \times [0,\infty ) \times [0, \infty ) \rightarrow (-\infty ,… Click to show full abstract

We consider the nonlinear fourth-order semipositone boundary value problem $$\begin{aligned} u^{(4)}=f(t,u(t),u'(t)), \quad t \in (0,1), \end{aligned}$$u(4)=f(t,u(t),u′(t)),t∈(0,1),$$\begin{aligned} u(0)=u'(0)=u''(1)=u'''(1)=0, \end{aligned}$$u(0)=u′(0)=u′′(1)=u′′′(1)=0,where $$f: [0,1] \times [0,\infty ) \times [0, \infty ) \rightarrow (-\infty , \infty )$$f:[0,1]×[0,∞)×[0,∞)→(-∞,∞) has the property $$f(t,x,y) \ge -g(t)$$f(t,x,y)≥-g(t) for a nonnegative continuous function g(t). This paper improves the results of Ma (Hiroshima Math J 33:217–227, 2013) and Spraker (Differ Equ Appl 8:21–31, 2016).

Keywords: fourth order; value problem; boundary value

Journal Title: Mediterranean Journal of Mathematics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.