LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ground States for a Class of Generalized Quasilinear Schrödinger Equations in $${\mathbb {R}}^N$$RN

Photo by diggity_dog from unsplash

In this paper, we study the following generalized quasilinear Schrödinger equation: $$\begin{aligned} -\text {div}(g^2(u)\nabla u)+g(u)g'(u)|\nabla u|^2+V(x)u=f(x,u),\,\, x\in {\mathbb {R}}^N, \end{aligned}$$-div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=f(x,u),x∈RN, where $$N\ge 3$$N≥3, $$2^*=\frac{2N}{N-2}$$2∗=2NN-2, $$g\in \mathcal {C}^1({\mathbb {R}},{\mathbb {R}}^{+})$$g∈C1(R,R+), V(x)… Click to show full abstract

In this paper, we study the following generalized quasilinear Schrödinger equation: $$\begin{aligned} -\text {div}(g^2(u)\nabla u)+g(u)g'(u)|\nabla u|^2+V(x)u=f(x,u),\,\, x\in {\mathbb {R}}^N, \end{aligned}$$-div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=f(x,u),x∈RN, where $$N\ge 3$$N≥3, $$2^*=\frac{2N}{N-2}$$2∗=2NN-2, $$g\in \mathcal {C}^1({\mathbb {R}},{\mathbb {R}}^{+})$$g∈C1(R,R+), V(x) is 1-periodic or a bounded potential well. Using a change of variable, we obtain the existence of ground states for this problem using the Mountain Pass Theorem. Our results generalize some existing results.

Keywords: quasilinear schr; ground states; generalized quasilinear; schr dinger

Journal Title: Mediterranean Journal of Mathematics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.