In this paper, we study the following generalized quasilinear Schrödinger equation: $$\begin{aligned} -\text {div}(g^2(u)\nabla u)+g(u)g'(u)|\nabla u|^2+V(x)u=f(x,u),\,\, x\in {\mathbb {R}}^N, \end{aligned}$$-div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=f(x,u),x∈RN, where $$N\ge 3$$N≥3, $$2^*=\frac{2N}{N-2}$$2∗=2NN-2, $$g\in \mathcal {C}^1({\mathbb {R}},{\mathbb {R}}^{+})$$g∈C1(R,R+), V(x)… Click to show full abstract
In this paper, we study the following generalized quasilinear Schrödinger equation: $$\begin{aligned} -\text {div}(g^2(u)\nabla u)+g(u)g'(u)|\nabla u|^2+V(x)u=f(x,u),\,\, x\in {\mathbb {R}}^N, \end{aligned}$$-div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=f(x,u),x∈RN, where $$N\ge 3$$N≥3, $$2^*=\frac{2N}{N-2}$$2∗=2NN-2, $$g\in \mathcal {C}^1({\mathbb {R}},{\mathbb {R}}^{+})$$g∈C1(R,R+), V(x) is 1-periodic or a bounded potential well. Using a change of variable, we obtain the existence of ground states for this problem using the Mountain Pass Theorem. Our results generalize some existing results.
               
Click one of the above tabs to view related content.