We consider the following elliptic problem $$\begin{aligned} \left\{ \begin{array}{lll} -{\text {div}}\left( \dfrac{\left| \nabla u\right| ^{p-2} \nabla u}{\left| y\right| ^{ap}}\right) = \mu \dfrac{\left| u\right| ^{p-2} u}{\left| y\right| ^{p(a+1)}}+ h(x) \dfrac{\left| u\right|… Click to show full abstract
We consider the following elliptic problem $$\begin{aligned} \left\{ \begin{array}{lll} -{\text {div}}\left( \dfrac{\left| \nabla u\right| ^{p-2} \nabla u}{\left| y\right| ^{ap}}\right) = \mu \dfrac{\left| u\right| ^{p-2} u}{\left| y\right| ^{p(a+1)}}+ h(x) \dfrac{\left| u\right| ^{q-2} u}{\left| y\right| ^{bq}} + f(x,u) &{}&{} \text{ in } \ \Omega , \\ u = 0 &{}&{} \text{ on } \ \partial \Omega ,\\ \end{array} \right. \end{aligned}$$-div∇up-2∇uyap=μup-2uyp(a+1)+h(x)uq-2uybq+f(x,u)inΩ,u=0on∂Ω,in an unbounded cylindrical domain $$\begin{aligned} \Omega :=\{ (y,z)\in {\mathbb {R}}^{m+1}\times {\mathbb {R}}^{N-m-1} \ ; \ 01$$p>1, $$1\le m
               
Click one of the above tabs to view related content.