LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nice results about quadratic type functional equations on semigroups

Photo from archive.org

Let $$(S,+)$$ ( S , + ) be an abelian semigroup, let $$\sigma $$ σ be an involution of S ,  let X be a linear space over the field… Click to show full abstract

Let $$(S,+)$$ ( S , + ) be an abelian semigroup, let $$\sigma $$ σ be an involution of S ,  let X be a linear space over the field $${\mathbb {K}}\in \{{\mathbb {R}},{\mathbb {C}}\}$$ K ∈ { R , C } and let $$\mu $$ μ , $$\nu $$ ν be linear combinations of Dirac measures. In the present paper, we find the general solution $$f:S\rightarrow X$$ f : S → X of the following functional equation $$\begin{aligned} \int _{S}f(x+y+t)d\mu (t)+\int _{S}f(x+\sigma (y)+t)d\nu (t)=f(x)+f(y), \ \ \ x,y \in S, \end{aligned}$$ ∫ S f ( x + y + t ) d μ ( t ) + ∫ S f ( x + σ ( y ) + t ) d ν ( t ) = f ( x ) + f ( y ) , x , y ∈ S , in terms of additive and bi-additive maps. Many consequences of this result are presented.

Keywords: quadratic type; nice results; results quadratic; functional equations; type functional; equations semigroups

Journal Title: Aequationes mathematicae
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.