LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lysosomal membrane permeabilization causes secretion of IL-1β in human vascular smooth muscle cells

Photo from wikipedia

ObjectiveIL-1β secretion by the inflammasome is strictly controlled and requires two sequential signals: a priming signal and an activating signal. Lysosomal membrane permeabilization (LMP) plays a critical role in the… Click to show full abstract

ObjectiveIL-1β secretion by the inflammasome is strictly controlled and requires two sequential signals: a priming signal and an activating signal. Lysosomal membrane permeabilization (LMP) plays a critical role in the regulation of NLRP3 inflammasome, and generally acts as an activating signal. However, the role of LMP controlling NLRP3 inflammasome activation in human vascular smooth muscle cells (hVSMCs) is not well defined.MethodsLMP was induced in hVSMCs by Leu-Leu-O-methyl ester. Cathepsin B was inhibited by CA-074 Me. Cytokine release, mRNA, and protein were quantified by enzyme-linked immunosorbent assay, quantitative PCR, and Western blot, respectively. NF-κB activity was analyzed by immunostaining of the NF-κB p65 nuclear translocation and using the dual-luciferase reporter assay system.ResultsLMP had both priming and activating roles, causing an upregulation of proIL-1β and NLRP3 and the secretion of mature IL-1β from unprimed hVSMCs. LMP activated the canonical NF-κB pathway. The priming effect of LMP was inhibited by CA-074 Me, indicating an upstream role of cathepsin B.ConclusionsThese data support a novel role of LMP as a single stimulus for the secretion of IL-1β from hVSMCs, implying the possibility that hVSMCs are an important initiator of the sterile inflammatory response caused by lysosomal disintegration.

Keywords: secretion; vascular smooth; human vascular; lysosomal membrane; membrane permeabilization; lmp

Journal Title: Inflammation Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.