Objective This study aimed to explore the role of the miR-146a-5p/TRAF6/NF-KB axis in chondrocyte apoptosis. Methods Transcriptome sequencing for microRNA expression in control and osteoarthritic cartilage was performed. Bioinformatic analysis… Click to show full abstract
Objective This study aimed to explore the role of the miR-146a-5p/TRAF6/NF-KB axis in chondrocyte apoptosis. Methods Transcriptome sequencing for microRNA expression in control and osteoarthritic cartilage was performed. Bioinformatic analysis was performed to identify the target genes of miR-146a-5p, and subsequently, Gene Ontology (GO) terms and KEGG pathways were identified. Furthermore, protein–protein interactions were analyzed to identify the hub regulatory gene of miR-146a-5p. MiR-146a-5p mimic, inhibitor and the corresponding negative control were constructed, and the apoptosis rates were measured in the transfected groups by flow cytometry, TUNEL staining and Western blot. Potential miRNA-target interactions were identified by dual-luciferase reporter assay. Results The microRNA array demonstrated that miR-146a-5p was significantly upregulated in osteoarthritic tissues, which was further confirmed by PCR analysis. Compared with the control group, IL-1β significantly decreased the viability of chondrocytes, while coculture with miR-146a-5p inhibitor rescued the IL-1β-induced inhibition of chondrocyte viability. Western blot results also identified the proapoptotic effects of miR-146a-5p. Bioinformatic analysis results revealed that miR-146a-5p targeted 159 potential genes, and TRAF6 was the hub gene among the 159 genes. The relative expression of TRAF6 was significantly decreased in the IL-1β-induced group. When siTRAF6 was added, apoptosis was significantly increased. Luciferase reporter assays showed that luciferase activity of the TRAF6 3′-UTR reporter was decreased in chondrocytes after transfection with the miR-146a-5p mimic. Conclusions This work showed that miR-146 induces chondrocyte apoptosis by targeting the TRAF6-mediated NF-KB signaling pathway, and miR-146 may be a potential target for OA treatment.
               
Click one of the above tabs to view related content.