LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the functional equation $${\varvec{f}}({\varvec{x}})+{\varvec{f}}({\varvec{y}})=\mathbf{max} \{{\varvec{f}}({\varvec{xy}}),{\varvec{f}}({\varvec{xy}}^{-{\varvec{1}}})\}$$f(x)+f(y)=max{f(xy),f(xy-1)} on groups

Photo by saadahmad_umn from unsplash

We analyse the functional equation $$\begin{aligned} f(x)+f(y)=\max \{f(xy),f(xy^{-1})\} \end{aligned}$$f(x)+f(y)=max{f(xy),f(xy-1)}for a function $$f:G\rightarrow \mathbb R$$f:G→R where G is a group. Without further assumption it characterises the absolute value of additive functions.… Click to show full abstract

We analyse the functional equation $$\begin{aligned} f(x)+f(y)=\max \{f(xy),f(xy^{-1})\} \end{aligned}$$f(x)+f(y)=max{f(xy),f(xy-1)}for a function $$f:G\rightarrow \mathbb R$$f:G→R where G is a group. Without further assumption it characterises the absolute value of additive functions. In addition $$\{z\in G\mid f(z)=0\}$${z∈G∣f(z)=0} is a normal subgroup of G with abelian factor group.

Keywords: varvec varvec; varvec; functional equation; max; equation varvec

Journal Title: Archiv der Mathematik
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.