LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The maximal discrete extension of $$SL_2(\mathcal {\scriptstyle {O}}_K)$$SL2(OK) for an imaginary quadratic number field K

Photo from wikipedia

Let $$\mathcal {\scriptstyle {O}}_K$$OK be the ring of integers of an imaginary quadratic number field K. In this paper we give a new description of the maximal discrete extension of… Click to show full abstract

Let $$\mathcal {\scriptstyle {O}}_K$$OK be the ring of integers of an imaginary quadratic number field K. In this paper we give a new description of the maximal discrete extension of the group $$SL_2(\mathcal {\scriptstyle {O}}_K)$$SL2(OK) inside $$SL_2(\mathbb {C})$$SL2(C), which uses generalized Atkin–Lehner involutions. Moreover we find a natural characterization of this group in SO(1, 3).

Keywords: sl2; mathcal scriptstyle; number field; quadratic number; maximal discrete; imaginary quadratic

Journal Title: Archiv der Mathematik
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.