LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potentiation of a neuronal nicotinic receptor via pseudo-agonist site

Photo by homajob from unsplash

Neuronal nicotinic receptors containing α4 and β2 subunits assemble in two pentameric stoichiometries, (α4)3(β2)2 and (α4)2(β2)3, each with distinct pharmacological signatures; (α4)3(β2)2 receptors are strongly potentiated by the drug NS9283,… Click to show full abstract

Neuronal nicotinic receptors containing α4 and β2 subunits assemble in two pentameric stoichiometries, (α4)3(β2)2 and (α4)2(β2)3, each with distinct pharmacological signatures; (α4)3(β2)2 receptors are strongly potentiated by the drug NS9283, whereas (α4)2(β2)3 receptors are unaffected. Despite this stoichiometry-selective pharmacology, the molecular identity of the target for NS9283 remains elusive. Here, studying (α4)3(β2)2 receptors, we show that mutations at either the principal face of the β2 subunit or the complementary face of the α4 subunit prevent NS9283 potentiation of ACh-elicited single-channel currents, suggesting the drug targets the β2–α4 pseudo-agonist sites, the α4–α4 agonist site, or both sites. To distinguish among these possibilities, we generated concatemeric receptors with mutations at specified subunit interfaces, and monitored the ability of NS9283 to potentiate ACh-elicited single-channel currents. We find that a mutation at the principal face of the β2 subunit at either β2–α4 pseudo-agonist site suppresses potentiation, whereas mutation at the complementary face of the α4 subunit at the α4–α4 agonist site allows a significant potentiation. Thus, monitoring potentiation of single concatemeric receptor channels reveals that the β2–α4 pseudo-agonist sites are required for stoichiometry-selective drug action. Together with the recently determined structure of the (α4)3(β2)2 receptor, the findings have implications for structure-guided drug design.

Keywords: neuronal nicotinic; pseudo agonist; agonist site; receptor; potentiation

Journal Title: Cellular and Molecular Life Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.