We describe KMS and ground states arising from a generalized gauge action on ultragraph C*-algebras. We focus on ultragraphs that satisfy Condition (RFUM), so that we can use the partial crossed… Click to show full abstract
We describe KMS and ground states arising from a generalized gauge action on ultragraph C*-algebras. We focus on ultragraphs that satisfy Condition (RFUM), so that we can use the partial crossed product description of ultragraph C*-algebras recently described by the second author and Danilo Royer. In particular, for ultragraphs with no sinks, we generalize a recent result by Toke Carlsen and Nadia Larsen: Given a time evolution on the C*-algebra of an ultragraph, induced by a function on the edge set, we characterize the KMS states in five different ways and ground states in four different ways. In both cases we include a characterization given by maps on the set of generalized vertices of the ultragraph. We apply this last result to show the existence of KMS and ground states for an ultragraph C*-algebra that is neither an Exel–Laca nor a graph C*-algebra.
               
Click one of the above tabs to view related content.