LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Bi-Laplacian with Wentzell Boundary Conditions on Lipschitz Domains

Photo by benhershey from unsplash

We investigate the Bi-Laplacian with Wentzell boundary conditions in a bounded domain $$\Omega \subseteq \mathbb {R}^d$$ Ω ⊆ R d with Lipschitz boundary $$\Gamma $$ Γ . More precisely, using… Click to show full abstract

We investigate the Bi-Laplacian with Wentzell boundary conditions in a bounded domain $$\Omega \subseteq \mathbb {R}^d$$ Ω ⊆ R d with Lipschitz boundary $$\Gamma $$ Γ . More precisely, using form methods, we show that the associated operator on the ground space $$L^2(\Omega )\times L^2(\Gamma )$$ L 2 ( Ω ) × L 2 ( Γ ) has compact resolvent and generates a holomorphic and strongly continuous real semigroup of self-adjoint operators. Furthermore, we give a full characterization of the domain in terms of Sobolev spaces, also proving Hölder regularity of solutions, allowing classical interpretation of the boundary condition. Finally, we investigate spectrum and asymptotic behavior of the semigroup, as well as eventual positivity.

Keywords: wentzell boundary; conditions lipschitz; lipschitz domains; boundary conditions; laplacian wentzell

Journal Title: Integral Equations and Operator Theory
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.