LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Improved Hydrological Gravity Model for Moxa Observatory, Germany

Photo by thinkmagically from unsplash

The gravity variations observed by the superconducting gravimeter (SG) CD-034 at Moxa Geodynamic Observatory/Germany were compared with the GRACE results some years ago. The combination of a local hydrological model… Click to show full abstract

The gravity variations observed by the superconducting gravimeter (SG) CD-034 at Moxa Geodynamic Observatory/Germany were compared with the GRACE results some years ago. The combination of a local hydrological model of a catchment area with a 3D-gravimetric model had been applied successfully for correcting the SG record of Moxa which is especially necessary due to the strong topography nearest to the SG location. Now, the models have been corrected and improved considerably by inserting several details in the very near surrounding. Mainly these are: the observatory building is inserted with the roof covered by a soil layer above the gravity sensor where humidity is varying, snow is placed on top of the roof and on topography (steep slope), and ground water is taken into account, additionally. The result is that the comparison of the corrected gravity residuals with gravity variations of the satellite mission GRACE, now using RL5 data, shows higher agreement, not only in amplitude but also the formerly apparent phase shift is obviously not realistic. The agreement between terrestrial gravity variations (SG) and the GRACE data is improved considerably which is discussed widely.

Keywords: topography; moxa; model; gravity; observatory germany

Journal Title: Pure and Applied Geophysics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.