LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computation of Ground Motion Amplification Scenario in NCT Delhi for Earthquake Engineering Purposes and Seismic Microzonation

Photo from wikipedia

This paper presents a scenario for the spatial variation of the fundamental frequency of the sediment deposits above the basement and the corresponding amplification as well as the average spectral… Click to show full abstract

This paper presents a scenario for the spatial variation of the fundamental frequency of the sediment deposits above the basement and the corresponding amplification as well as the average spectral amplification in different frequency bandwidths for the National Capital Territory Delhi (the capital of India). The exposed central quartzite ridge and the Yamuna River channel are responsible for very large spatial variations of the fundamental frequency in the eastern part of the National Capital Territory Delhi. At 20% of the considered sites, a good match is obtained between the fundamental frequency computed numerically using available S-wave velocities to a certain depth and their extrapolation and that obtained experimentally. The computed fundamental and dominant frequencies reveal that both medium-rise (5–10 storey) and high-rise (> 10 storey) buildings in the western part and medium-rise buildings lying in the localities east of or very near to the Yamuna River may suffer heavy to very heavy damage due to the occurrence of the double resonance phenomenon. Furthermore, 1–2-storey buildings lying on the weathered exposed quartzite rock may also suffer heavy damage during local earthquakes because of the occurrence of double resonance. The possible reasons behind the lack of earthquake damage to the Qutab Minar, the tallest brick masonry minaret in the world, over the last 800 years may be the nonoccurrence of double resonance and almost no amplification in the low frequency range. There are two localities in the western part of the National Capital Territory Delhi, namely Kanganheri-Chhawla and Buradi, wherein all sorts of buildings are highly vulnerable to earthquake damage. For the closed Chhatarpur Basin and a semiclosed basin to its northeast, formed due to exposed quartzite rock, three-dimensional (3D) simulations are required to predict the characteristics of basin-generated surface waves and their focusing effects in the Chhatarpur Basin. The average spectral amplification map developed for the 0–10 Hz bandwidth depicts a range of 2.25–4.82 in the National Capital Territory Delhi and may be directly used to transfer the estimated seismic hazard at basement to the free surface.

Keywords: frequency; national capital; capital territory; amplification; earthquake

Journal Title: Pure and Applied Geophysics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.