In the present paper, inspired by methods contained in Gajda and Kominek (Stud Math 100:25–38, 1991) we generalize the well known sandwich theorem for subadditive and superadditive functionals to the… Click to show full abstract
In the present paper, inspired by methods contained in Gajda and Kominek (Stud Math 100:25–38, 1991) we generalize the well known sandwich theorem for subadditive and superadditive functionals to the case of delta-subadditive and delta-superadditive mappings. As a consequence we obtain the classical Hyers–Ulam stability result for the Cauchy functional equation. We also consider the problem of supporting delta-subadditive maps by additive ones.
               
Click one of the above tabs to view related content.