LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Block Matching Video Compression Based on Sparse Representation and Dictionary Learning

Photo from wikipedia

This work presents a video compression method based on sparse representation and dictionary learning algorithms. The proposed scheme achieves superb rate-distortion performance and decent subjective quality, compared to modern standards,… Click to show full abstract

This work presents a video compression method based on sparse representation and dictionary learning algorithms. The proposed scheme achieves superb rate-distortion performance and decent subjective quality, compared to modern standards, especially at low bit-rates. Different from similar works, sparse representation is employed here for both intra-frame and block matching inter-frame motion information. Dividing video frames to reference and current frames, motion vectors and motion compensation residuals of current frames are estimated in regard to reference frames. The sparse codes of reference frames and motion compensation residuals are obtained using learned dictionaries, entropy-coded, and stored or sent to the receiver along with the coded motion field. In the receiver, after decoding the sparse codes and motion vectors, the reference frames and residuals are reconstructed employing the same learned dictionary and the current frames are recovered using the reference frames and motion fields. In the proposed scheme, the Iterative Least Square Dictionary Learning Algorithm (ILS-DLA) and K-SVD dictionary building methods are employed in the DCT domain. The compression rate and quality of the method based on the two dictionary learning algorithms are compared to each other and to H.264/AVC and HEVC modern standards. The results based on PSNR and SSIM criteria show that the proposed approach presents superior performance respect to H.264/AVC and even HEVC for higher bit-rates of QCIF video format, and the K-SVD learning algorithm performs slightly better than the ILS-DLA for the purpose.

Keywords: sparse representation; compression; dictionary learning; motion

Journal Title: Circuits, Systems, and Signal Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.