This article presents the performance evaluation of Vector Fitting Algorithm (VFA) from a system identification perspective. In this paper, VFA has been first applied to known baseband and bandpass systems… Click to show full abstract
This article presents the performance evaluation of Vector Fitting Algorithm (VFA) from a system identification perspective. In this paper, VFA has been first applied to known baseband and bandpass systems such as Butterworth lowpass and bandpass filters to analyze the algorithm’s pole-residue extraction ability for band-limited noisy data. The poles identified by the algorithm for different bandwidths and noise powers are compared with the actual system poles of the baseband and bandpass systems. It is concluded that the algorithm is capable of identifying the actual system poles even if the capture bandwidth is less than the 3 dB bandwidth, which is a significant observation of this paper. It is also seen that the system identification performance with noisy data is better for baseband systems when compared to bandpass systems. Further, a practical investigation has been done to evaluate VFA performance for modeling a microstrip coupled line filter in the presence of noise.
               
Click one of the above tabs to view related content.