A control-bounded analog-to-digital converter consists of a linear analog system that is subject to digital control, and a digital filter that estimates the analog input signal from the digital control… Click to show full abstract
A control-bounded analog-to-digital converter consists of a linear analog system that is subject to digital control, and a digital filter that estimates the analog input signal from the digital control signals. Such converters have many commonalities with delta–sigma converters, but they can use more general analog filters. The paper describes the operating principle, gives a transfer function analysis, and describes the digital filtering. In addition, the paper discusses two examples of such architectures. The first example is a cascade structure reminiscent of, but simpler than, a high-order MASH converter. The second example combines two attractive properties that have so far been considered incompatible. Its nominal conversion noise (assuming ideal components) essentially equals that of the first example. However, its analog filter is a fully connected network to which the input signal is fed in parallel, which potentially makes it more robust against nonidealities.
               
Click one of the above tabs to view related content.