LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and biological evaluation of novel N-2,4-dimethoxyphenyl dithiolopyrrolone derivatives as bacterial RNA polymerase inhibitors

Photo by matnapo from unsplash

Eighteen novel N-2,4-dimethoxyphenyl dithiolopyrrolone derivatives inhibiting bacterial RNA polymerase (RNAP) were synthesized based on dithiolopyrrolone scaffold. Some compounds displayed potent antimicrobial activity against Gram-positive bacteria of Staphylococcus aureus and Streptococcus… Click to show full abstract

Eighteen novel N-2,4-dimethoxyphenyl dithiolopyrrolone derivatives inhibiting bacterial RNA polymerase (RNAP) were synthesized based on dithiolopyrrolone scaffold. Some compounds displayed potent antimicrobial activity against Gram-positive bacteria of Staphylococcus aureus and Streptococcus pneumoniae, but not the Gram-negative bacteria of Escherichia coli and Pseudomonas aeruginosa. Moreover, the most promising compound 7b showed potent antibacterial activity against clinical isolates of MRSA, VRSA, RRSA, and MPRSP with MIC values in the range of 0.125–2 μg/mL, and potent inhibitory activity against Escherichia coli RNAP with IC50 value of 19.4 ± 1.3 μM. In addition, compound 7b showed cytotoxicity against LO2 cells with IC50 value of 18.5 ± 1.89 μM. Molecular docking studies revealed that compound 7b interacted with the switch region of the bacterial RNAP. Taken together, compound 7b might serve as a lead structure for developing potent bacterial RNAP inhibitors.

Keywords: dithiolopyrrolone; bacterial rna; rna polymerase; dithiolopyrrolone derivatives; dimethoxyphenyl dithiolopyrrolone; novel dimethoxyphenyl

Journal Title: Medicinal Chemistry Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.