LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of scaffold granule size use in Masquelet technique on periosteal reaction: a study in rat femur critical size bone defect model

Photo from wikipedia

The Masquelet technique for the treatment of large bone defects is a two-stage procedure based on an induced membrane. Compared to mature periosteum, the induced membrane differs significantly. However, both… Click to show full abstract

The Masquelet technique for the treatment of large bone defects is a two-stage procedure based on an induced membrane. Compared to mature periosteum, the induced membrane differs significantly. However, both play a crucial role in bone regeneration. As part of a histological and radiological post-evaluation of an earlier project, we analyzed the influence of the granule size of the bone void filler Herafill® on development of periosteum regrowth in a critical size defect. We compared three different sizes of Herafill® granules (Heraeus Medical GmbH, Wehrheim) in vivo in a rat femoral critical size defect (10 mm) treated with the induced membrane technique. After 8 weeks healing time, femurs were harvested and taken for histological and radiological analysis. A significantly increased regrowth of periosteum into the defect was found when small granules were used. Large granules showed significantly increased occurrence of bone capping. Small granules lead to significant increase in callus formation in the vicinity to the membrane. The size of Herafill® granules has significant impact on the development of periosteal-like structures around the defect using Masquelet’s induced membrane technique. Small granules show significantly increased regrowth of periosteum and improved bone formation adjacent to the induced membrane.

Keywords: technique; induced membrane; masquelet; critical size; bone; size

Journal Title: European Journal of Trauma and Emergency Surgery
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.