Phytotoxicity is an inevitable consideration in evaluating the potential ecological effects of nanoparticles (NPs). Natural ecosystems are complex and accompanied by many other environmental factors. Thus understanding the impact of… Click to show full abstract
Phytotoxicity is an inevitable consideration in evaluating the potential ecological effects of nanoparticles (NPs). Natural ecosystems are complex and accompanied by many other environmental factors. Thus understanding the impact of NPs on plant response to other environmental stresses is crucial to assess the comprehensive toxicity of NPs in ecosystem. In the present study, Arabidopsis thaliana seedlings were cultured in medium containing zinc oxide NPs (ZnO-NPs) then subjected to heat stress at 37°C. Alleviation of transcriptional gene silencing (TGS) in aerial leafy tissues was assessed as an epi-genotoxic endpoint. Results showed that 1 µg/mL ZnO-NPs alone can not alleviate GUS gene (β-glucuronidase) which silenced by TGS (TGS-GUS), but it significantly enhanced heat stress-induced alleviation of TGS-GUS, suggesting an synergistic effect of ZnO-NPs and heat stress on genomic instability. Further study showed that the initiation of synergistic effect could be regulated by plant developmental stage, heat duration and temperature, and heat shock related genes might be involved in.
               
Click one of the above tabs to view related content.