LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low Cost Biomass Derived Biochar Amendment on Persistence and Sorption Behaviour of Flubendiamide in Soil

Photo by pulkit_pithva from unsplash

Persistence and sorption behaviour of flubendiamide in two different Indian soils as affected by maize stalk biochar was studied. The persistence was more in West Bengal soil (178.6 days) than… Click to show full abstract

Persistence and sorption behaviour of flubendiamide in two different Indian soils as affected by maize stalk biochar was studied. The persistence was more in West Bengal soil (178.6 days) than Sikkim soil (165.3 days) at 10 µg g−1 fortification level. Biochar amendment addition to soil at 5% enhanced the degradation process and half-life (T1/2) values were 103.5 and 117.4 days, respectively for biochar amended Sikkim and West Bengal soil. Sorption study through batch equilibrium method resulted the 4 h equilibrium time with adsorption 6.22% ± 0.16% and 5.26% ± 0.16% in Sikkim and West Bengal soil, respectively. Biochar addition at 5% increased the adsorption of flubendiamide to 8.12% ± 0.16% and 5.88% ± 0.16% indicating a greater influence in this process. The adsorption was more in biochar amended Sikkim soil than West Bengal soil. The values of desorption was slower than adsorption indicating a hysteresis effect having hysteresis coefficient (H1) ranges between 0.025 and 0.151 in two test soils.

Keywords: behaviour flubendiamide; persistence; sorption behaviour; soil; persistence sorption

Journal Title: Bulletin of Environmental Contamination and Toxicology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.