LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low-Temperature Thermal Desorption Effectively Mitigates Accumulation of Total Mercury and Methylmercury in Rice (Oryza sativa L.)

Photo from wikipedia

For maximally reserving soil fertility, two critical parameters (i.e. time and temperature) of low-temperature thermal desorption (LTTD) were initially optimized to remediate the mercury-contaminated soil from a mercury mining area.… Click to show full abstract

For maximally reserving soil fertility, two critical parameters (i.e. time and temperature) of low-temperature thermal desorption (LTTD) were initially optimized to remediate the mercury-contaminated soil from a mercury mining area. The effect of LTTD on soil properties was investigated, and the bioaccumulation of total mercury (THg) and methylmercury (MeHg) in rice (Oryza sativa L.) were researched via a pot experiment. Results indicated that the physicochemical properties and fertility of the soil after LTTD still meet the requirements of rice growth. Moreover, the concentrations of THg and MeHg in the remediated soil were decreased by 94.1% and 98.8%, respectively. Further, the bioavailability of Hg in soil was significantly reduced. More importantly, the concentrations of THg and MeHg in the seed of rice plant cultivated on the remediated soil were decreased by 57.6% and 80.2%, respectively. Overall, LTTD technology could efficiently remediate Hg-contaminated soil and be a promise remediation strategy.

Keywords: mercury; soil; rice; temperature thermal; low temperature

Journal Title: Bulletin of Environmental Contamination and Toxicology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.