Based on air samples within 24 h after snowfall, gaseous and particulate concentrations of 16 priority PAHs were obtained, which provided a good opportunity to study the temporal trend of… Click to show full abstract
Based on air samples within 24 h after snowfall, gaseous and particulate concentrations of 16 priority PAHs were obtained, which provided a good opportunity to study the temporal trend of atmospheric PAHs. An obvious temporal trend with atmospheric concentration was observed, which was mainly influenced by emission sources. It was found that the maximum concentration (Σ16PAHs) was 272.8 ng/m3, appeared in the rush hour of traffic. To the contrary, the minimum concentration was 82.39 ng/m3 at the period with the least anthropogenic activities. The values of particle-phase fraction\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ({\varPhi }_{P}$$\end{document}) and G/P partitioning quotient (log KP) were increased along with molecular weight of PAHs. However, for individual PAHs, the differences with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varPhi }_{P}$$\end{document} and log KP were not obvious within 24 h. Furthermore, similar statistically significant positive correlations were found between log KP and log KOA among different periods. According to the short sampling program, chemical properties should be the major influencing factor for the temporal trend of G/P partitioning. The results of the case study provided new insights into the research field of G/P partitioning of PAHs.
               
Click one of the above tabs to view related content.