LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Removal of specular reflections from image sequences using feature correspondences

Photo from wikipedia

The presence of specular highlights can hide underlying features of a scene within an image and can be problematic in many application scenarios. In particular, this poses a significant challenge… Click to show full abstract

The presence of specular highlights can hide underlying features of a scene within an image and can be problematic in many application scenarios. In particular, this poses a significant challenge for applications where image stitching is used to create a single static image of a scene from inspection footage of pipes, gas tubes, train tracks and concrete structures. Furthermore, they can hide small defects in the images causing them to be missed during inspection. We present a method which exploits additional information in neighbouring frames from video footage to reduce specularity from each frame. The technique first automatically determines frames which contain overlapping regions before the relationship that exists between them is exploited in order to suppress the effects of specular reflections. This results in an image that is free from specular highlights provided there is at least one frame present in the sequence where a given pixel is present in a diffuse form. The method is shown to work well on greyscale as well as colour images and effectively reduces specularity and significantly improves the quality of the stitched image, even in the presence of noise. While applied to the challenge of reducing specularity in inspection videos, the method improves upon the state-of-the-art in specularity removal, and its applications are wide-ranging as a general purpose pre-processing tool.

Keywords: image; reflections image; removal specular; image sequences; specularity; specular reflections

Journal Title: Machine Vision and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.