LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures

Photo by davidmatos from unsplash

The severity of sustained injury resulting from assault-related violence can be minimised by reducing detection time. However, it has been shown that human operators perform poorly at detecting events found… Click to show full abstract

The severity of sustained injury resulting from assault-related violence can be minimised by reducing detection time. However, it has been shown that human operators perform poorly at detecting events found in video footage when presented with simultaneous feeds. We utilise computer vision techniques to develop an automated method of abnormal crowd detection that can aid a human operator in the detection of violent behaviour. We observed that behaviour in city centre environments often occurs in crowded areas, resulting in individual actions being occluded by other crowd members. We propose a real-time descriptor that models crowd dynamics by encoding changes in crowd texture using temporal summaries of grey level co-occurrence matrix features. We introduce a measure of inter-frame uniformity and demonstrate that the appearance of violent behaviour changes in a less uniform manner when compared to other types of crowd behaviour. Our proposed method is computationally cheap and offers real-time description. Evaluating our method using a privately held CCTV dataset and the publicly available Violent Flows, UCF Web Abnormality and UMN Abnormal Crowd datasets, we report a receiver operating characteristic score of 0.9782, 0.9403, 0.8218 and 0.9956, respectively.

Keywords: using temporal; grey level; abnormal crowd; occurrence matrix; level occurrence

Journal Title: Machine Vision and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.