LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multidisciplinary optimization design of a new underwater vehicle with highly efficient gradient calculation

Photo by codioful from unsplash

In order to reduce the cost of oceanographic exploration, a new underwater vehicle is designed to sail the required distance with the lowest energy consumed. Since the new underwater vehicle… Click to show full abstract

In order to reduce the cost of oceanographic exploration, a new underwater vehicle is designed to sail the required distance with the lowest energy consumed. Since the new underwater vehicle is a complicated multidisciplinary system, it is firstly decomposed into four smaller disciplines and then a multidisciplinary design optimization (MDO) problem is built based on these disciplines. The Multidisciplinary Feasible (MDF) architecture is adopted as the solution strategy to this optimization problem considering that it is easily implemented and a multidisciplinary feasible solution is always guaranteed throughout the optimization process. To solve this optimization problem efficiently, the coupled adjoint method is firstly introduced to improve the efficiency of gradient calculation and then a discipline-merging method is proposed to further enhance the computational efficiency. After this, the discipline-merging method is verified against the finite difference method in two aspects of solution accuracy and computational costs and the results show it is an effective and high efficient gradient calculation method. Finally, the multidisciplinary design optimization of the new underwater vehicle is performed efficiently under the MDF architecture with the discipline-merging method to calculate gradients.

Keywords: gradient calculation; new underwater; optimization; underwater vehicle; design

Journal Title: Structural and Multidisciplinary Optimization
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.