Multi-material topology optimization is a practical tool that allows for improved structural designs. However, most studies are presented in the context of continuum topology optimization – few studies focus on… Click to show full abstract
Multi-material topology optimization is a practical tool that allows for improved structural designs. However, most studies are presented in the context of continuum topology optimization – few studies focus on truss topology optimization. Moreover, most work in this field has been restricted to linear material behavior with limited volume constraint settings for multiple materials. To address these issues, we propose an efficient multi-material topology optimization formulation considering material nonlinearity. The proposed formulation handles an arbitrary number of candidate materials with flexible material properties, features freely specified material layers, and includes a generalized volume constraint setting. To efficiently handle such arbitrary volume constraints, we derive a design update scheme that performs robust updates of the design variables associated with each volume constraint independently. The derivation is based on the separable feature of the dual problem of the convex approximated primal subproblem with respect to the Lagrange multipliers, and thus the update of design variables in each volume constraint only depends on the corresponding Lagrange multiplier. Through examples in 2D and 3D, using combinations of Ogden-based, bilinear, and linear materials, we demonstrate that the proposed multi-material topology optimization framework with the presented update scheme leads to a design tool that not only finds the optimal topology but also selects the proper type and amount of material. The design update scheme is named ZPR (phonetically, zipper), after the initials of the authors’ last names (Zhang-Paulino-Ramos Jr.).
               
Click one of the above tabs to view related content.