The development of flapping wing micro air vehicles (MAVs) has yielded remarkable progress over the last decades. Achieving high component stiffness is often in conflict with low weight requirement, which… Click to show full abstract
The development of flapping wing micro air vehicles (MAVs) has yielded remarkable progress over the last decades. Achieving high component stiffness is often in conflict with low weight requirement, which is highly desirable for longer flight time and higher payload. Moreover, vibration originated predominantly from the wings, gears and frames excitations, may compromise the flapping wing MAV’s stability and fatigue life. In order to improve the vehicle’s efficiency and performance, optimization of these various parameters is necessary. In this work, we present the structural optimization of a flapping wing micro air vehicle. We focus particularly on the gearbox optimization using Simulia Tosca Structure in Abaqus, which is a robust tool for designing lightweight, rigid and durable components. Various numerical experiments have been conducted towards optimizing the components’ topology, aimed at increasing the stiffness and reducing weight. The finding and results provide a better understanding of the optimal design topology for a spur gear among other structural components used in MAVs.
               
Click one of the above tabs to view related content.