LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On minimum length scale control in density based topology optimization

Photo by calum_mac from unsplash

The archetypical topology optimization problem concerns designing the layout of material within a given region of space so that some performance measure is extremized. To improve manufacturability and reduce manufacturing… Click to show full abstract

The archetypical topology optimization problem concerns designing the layout of material within a given region of space so that some performance measure is extremized. To improve manufacturability and reduce manufacturing costs, restrictions on the possible layouts may be imposed. Among such restrictions, constraining the minimum length scales of different regions of the design has a significant place. Within the density filter based topology optimization framework the most commonly used definition is that a region has a minimum length scale not less than D if any point within that region lies within a sphere with diameterD > 0 that is completely contained in the region. In this paper, we propose a variant of this minimum length scale definition for subsets of a convex (possibly bounded) domain. We show that sets with positive minimum length scale are characterized as being morphologically open. As a corollary, we find that sets where both the interior and the exterior have positive minimum length scales are characterized as being simultaneously morphologically open and (essentially) morphologically closed. For binary designs in the discretized setting, the latter translates to that the opening of the design should equal the closing of the design. To demonstrate the capability of the developed theory, we devise a method that heuristically promotes designs that are binary and have positive minimum length scales (possibly measured in different norms) on both phases for minimum compliance problems. The obtained designs are almost binary and possess minimum length scales on both phases.

Keywords: length scale; topology; minimum length; optimization

Journal Title: Structural and Multidisciplinary Optimization
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.