LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel method of distributed dynamic load identification for aircraft structure considering multi-source uncertainties

Photo from wikipedia

A series of work for distributed dynamic load identification is investigated in this paper considering unknown-but-bounded uncertainties in the aircraft structure. To facilitate the analysis, the complicated rudder structure is… Click to show full abstract

A series of work for distributed dynamic load identification is investigated in this paper considering unknown-but-bounded uncertainties in the aircraft structure. To facilitate the analysis, the complicated rudder structure is simplified to a plate structure based on the robust equivalence principle of mechanical property under multi-cases of flight environments. Aiming at the plate structure, a time domain–based model for distributed dynamic load identification is established through the acceleration response measured by sensors. Among them, the spatial distributed load is approximated by Chebyshev orthogonal polynomials at each sampling time, and load boundaries can be calculated by the Taylor-expansion-based uncertain propagation analysis. As keys to improve the reliability of recognition results, the optimization process for sensor placement is constructed by the particle swarm optimization algorithm, taking the robustness evaluation index and sensor distribution index into consideration. The validity and the feasibility of the proposed methodology are demonstrated by several numerical examples, and the results reveal that designer can make a rational tradeoff choice among the cost of sensor placement and the performance of load identification in a systematic framework.

Keywords: load identification; structure; load; distributed dynamic; dynamic load

Journal Title: Structural and Multidisciplinary Optimization
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.