LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inverse design of microchannel fluid flow networks using Turing pattern dehomogenization

Photo from wikipedia

Microchannel reactors are critical in biological plus energy-related applications and require meticulous design of hundreds-to-thousands of fluid flow channels. Such systems commonly comprise intricate space-filling microstructures to control the fluid… Click to show full abstract

Microchannel reactors are critical in biological plus energy-related applications and require meticulous design of hundreds-to-thousands of fluid flow channels. Such systems commonly comprise intricate space-filling microstructures to control the fluid flow distribution for the reaction process. Traditional flow channel design schemes are intuition-based or utilize analytical rule-based optimization strategies that are oversimplified for large-scale domains of arbitrary geometry. Here, a gradient-based optimization method is proposed, where effective porous media and fluid velocity vector design information is exploited and linked to explicit microchannel parameterizations. Reaction-diffusion equations are then utilized to generate space-filling Turing pattern microchannel flow structures from the porous media field. With this computationally efficient and broadly applicable technique, precise control of fluid flow distribution is demonstrated across large numbers (on the order of hundreds) of microchannels.

Keywords: turing pattern; microchannel; fluid flow; design

Journal Title: Structural and Multidisciplinary Optimization
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.