LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Topology optimization of 2D in-plane single mass MEMS gyroscopes

Photo from wikipedia

In this paper, we apply the topology optimization method to the design of MEMS gyroscopes, with the aim of supporting traditional trial and error design procedures. Using deterministic, gradient-based mathematical… Click to show full abstract

In this paper, we apply the topology optimization method to the design of MEMS gyroscopes, with the aim of supporting traditional trial and error design procedures. Using deterministic, gradient-based mathematical programming, the approach is here applied to the design of 2D in-plane single mass MEMS gyroscopes. We first focus on a benchmark academic case, for which we present and compare three different formulations of the optimization problem, considering typical industrial requirements. These include the maximization of the response of the sensor’s structure to the external angular rate, target resonant frequencies and minimum or constrained material usage. Also, a minimum length scale is imposed to the geometric features in order to ensure manufacturability, and an explicit penalization of grey elements is proposed to improve convergence to black and white layouts. Once the suitability of the method has been assessed, the formulation associated with the lowest computational cost, i.e. the one considering static estimations of the resonant frequencies, is applied to the design of a real-world MEMS gyroscope, targeting different resonant frequencies.

Keywords: plane single; topology; mems gyroscopes; topology optimization; optimization; single mass

Journal Title: Structural and Multidisciplinary Optimization
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.