LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diffraction of cnoidal waves by vertical cylinders in shallow water

Photo from wikipedia

Diffraction of nonlinear waves by single or multiple in-line vertical cylinders in shallow water is studied by use of different nonlinear, shallow-water wave theories. The fixed, in-line, vertical circular cylinders… Click to show full abstract

Diffraction of nonlinear waves by single or multiple in-line vertical cylinders in shallow water is studied by use of different nonlinear, shallow-water wave theories. The fixed, in-line, vertical circular cylinders extend from the free surface to the seafloor and are located in a row parallel to the incident wave direction. The wave–structure interaction problem is studied by use of the nonlinear generalized Boussinesq equations, the Green–Naghdi shallow-water wave equations, and the linearized version of the shallow-water wave equations. The wave-induced force and moment of the Green–Naghdi and the Boussinesq equations are presented when the incoming waves are cnoidal, and the forces are compared with the experimental data when available. Results of the linearized equations are compared with the nonlinear results. It is observed that nonlinearity is very important in the calculation of the wave loads on circular cylinders in shallow water. The variation of wave loads with wave height, wavelength and the spacing between cylinders is studied. Effect of the neighboring cylinders, and the shielding effect of upwave cylinders on the wave-induced loads on downwave cylinders are discussed.

Keywords: cylinders shallow; water; vertical cylinders; diffraction; water wave; shallow water

Journal Title: Theoretical and Computational Fluid Dynamics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.