LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New design total knee arthroplasty shows medial pivoting movement under weight-bearing conditions

Photo from wikipedia

PurposeTo assess, using model-based dynamic radiostereometric analysis (RSA), the biomechanical behaviour of a new design posterior-stabilized (PS) fixed-bearing (FB) total knee arthroplasty (TKA) in vivo while patients performing two common… Click to show full abstract

PurposeTo assess, using model-based dynamic radiostereometric analysis (RSA), the biomechanical behaviour of a new design posterior-stabilized (PS) fixed-bearing (FB) total knee arthroplasty (TKA) in vivo while patients performing two common motor tasks. The hypothesis was that model-based dynamic RSA is able to detect different behaviour of the implant under weight-bearing and non-weight-bearing conditions.MethodsA cohort of 15 non-consecutive patients was evaluated by dynamic RSA 9 months after TKA implantation. The mean age of patients was 73.4 (65–72) years. The kinematic evaluations were performed using an RSA device (BI-STAND DRX 2) developed in our Institute. The patients were asked to perform two active motor tasks: sit-to-stand in weight-bearing condition; range of motion (ROM) while sitting on the chair. The motion parameters were evaluated using the Grood and Suntay decomposition and the low-point kinematics methods.ResultsThe dynamic RSA evaluation showed a significant difference (p < 0.05) between the biomechanical behaviour of the prosthesis during the two motor tasks. When subjected to the patient weight (in the sit-to-stand) the low point of the medial compartment had a shorter motion (5.7 ± 0.2 mm) than the lateral (11.0 ± 0.2 mm). This realizes a medial pivot motion as in the normal knee. In the ROM task, where the patient had no weight on the prosthesis, this difference was not present: the medial compartment had a displacement of 12.7 ± 0.2 mm, while the lateral had 17.3 ± 0.2 mm.ConclusionsModel-based RSA proved to be an effective tool for the evaluation of TKA biomechanics. In particular, it was able to determine that the fixed-bearing posterior-stabilized TKA design evaluated in this study showed a medial pivoting movement under weight-bearing conditions that was not present when load was not applied. Under loading conditions what drives the pattern of movement is the prosthetic design itself. By the systematic use of this study protocol future comparisons among different implants could be performed, thus contributing significantly to the improvement of TKA design.Level of evidenceIV.

Keywords: weight bearing; movement; new design; bearing conditions; knee; design

Journal Title: Knee Surgery, Sports Traumatology, Arthroscopy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.