LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of O3 addition in the deflagration-to-detonation transition of an ethylene–oxygen mixture in a macroscale tube

Photo by ddpmarshall from unsplash

Deflagration-to-detonation transition (DDT) in a macroscale tube is investigated experimentally for stoichiometric ethylene–oxygen with O3 (ozone) addition. The effect of O3 addition on the DDT process is studied, including its… Click to show full abstract

Deflagration-to-detonation transition (DDT) in a macroscale tube is investigated experimentally for stoichiometric ethylene–oxygen with O3 (ozone) addition. The effect of O3 addition on the DDT process is studied, including its dependence on initial pressure. This kinetic effect of ozone addition was investigated by examining the influence of ozone self-decomposition and ethylene ozonolysis on ignition delay time. It was found that O3 addition promotes DDT, while excessive O3 addition has a negative effect on DDT. Consequently, there is a critical O3 addition effect which depends strongly on initial pressure. For a lower initial pressure, kinetic effects of O3 addition are more obvious.

Keywords: ethylene oxygen; macroscale tube; ethylene; detonation transition; addition; deflagration detonation

Journal Title: Shock Waves
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.