LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimized capacitive active ripple compensation topology for a 3.7 kW single-phase high power density on-board charger of electric vehicles

Photo from wikipedia

In this paper, a comprehensive investigation of the capacitive active ripple compensation (ARC) techniques is made to conclude which one is optimal to be used in on-board chargers of electric… Click to show full abstract

In this paper, a comprehensive investigation of the capacitive active ripple compensation (ARC) techniques is made to conclude which one is optimal to be used in on-board chargers of electric vehicles. Crucial aspects in such an application are: lifetime, volumetric and specific power density (including components’ size and the needed cooling solution), and overall efficiency of the charger. As presented in this paper, all capacitive ARC topologies (buck, boost, and buck–boost) have successfully diverted the low-frequency ripple from the dc side with a maximized power density. The ARC circuit consists of two additional switches, a smoothing auxiliary inductor, and a storage auxiliary capacitor. Finally, the buck capacitive ARC topology proves to be the optimal ARC technique for on-board chargers because of its maximal power density, minimal loss behavior and voltage stress, and long lifetime capability as it requires a downsized capacitance to the extent, where film capacitors or ceramic capacitors can replace the normally used bulky electrolytic capacitors. The performance of the three capacitive ARC techniques is proved by simulation results.

Keywords: topology; power density; arc; board

Journal Title: Electrical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.