This article presents an efficient method for power quality events (PQEs) detection and classification based on Curvelet transform (CT) and optimized extreme learning machine (OELM). Initially, various PQEs signal data… Click to show full abstract
This article presents an efficient method for power quality events (PQEs) detection and classification based on Curvelet transform (CT) and optimized extreme learning machine (OELM). Initially, various PQEs signal data are extracted even under noisy and simultaneously occurred multi-event conditions to reflect the real-time conditions. Relevant features of all these extracted signals are computed by using a multi-resolution and multidirectional fast discrete CT (FDCT) approach. These features are used to classify the events accurately by the proposed OELM. In this classification strategy, a modified differential evolution (MDE) is introduced to optimize the conventional ELM to enhance its precision rate. The proposed novel approach is tested and analyzed under various noisy conditions with 20 dB, 30 dB, and 50 dB with single and multi PQEs conditions. Comparative results with other recently proposed approaches by various authors reveal that the proposed CT- and OELM-based classifier titled CT-OELM can be considered as a competitive choice for implementing in the real-time monitoring system.
               
Click one of the above tabs to view related content.