LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vitro screening and in silico prediction of antifungal metabolites from rhizobacterium Achromobacter kerstersii JKP9

Photo by matnapo from unsplash

The main objective of this study was to identify the antifungal metabolites from Achromobacter kerstersii JKP9, a rhizosphere bacterium isolated from tomato cultivations, inhibiting the melanin biosynthetic pathways in vascular… Click to show full abstract

The main objective of this study was to identify the antifungal metabolites from Achromobacter kerstersii JKP9, a rhizosphere bacterium isolated from tomato cultivations, inhibiting the melanin biosynthetic pathways in vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici (Fol). To achieve this objective, all the rhizobacterial morphotypes were screened for plant-growth-promoting and antagonistic activities. Ethyl acetate extract of Achromobacter kerstersii JKP9 was purified in HPLC and predicted for antifungals in GC–MS equipped with Wiley library. After identification, molecular docking of useful ligands with modeled Short-chain Dehydrogenase/ Reductase (SDR) of Fol (Locus: FOXG_00472). Results were indicated that the potential strain Achromobacter kerstersii JKP9 exclusively secreted five pyrrole analogs notable for their antifungal role with no extracellular antifungal enzyme production as seen in other rhizobacterial isolates. In silico docking studies identified, Pyrrolo[1, 2-a]pyrazine-1,4-dione, hexahydro- as effective for SDR in Fol. From these results, we conclude that bacterial pyrroles can be used as an effective fungicide to control Fusarium wilt in tomatoes. In the future, these pyrrole derivatives can directly be employed as eco-friendly fungicides or may be used as antifungal supplements in agrochemical products for the sustainable production of tomatoes.

Keywords: kerstersii jkp9; achromobacter kerstersii; vitro screening; antifungal metabolites; screening silico

Journal Title: Archives of Microbiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.