LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diversity of soil nitrogen-fixing bacteria in the rhizosphere and non-rhizophere soils of Ebinur Lake Wetland.

Photo from wikipedia

Ebinur Lake Wetland is an understudied desert wetland ecosystem, particularly regarding nitrogen cycling. This study aimed to ascertain the diversity and richness of nitrogen-fixing bacterial communities in the Ebinur Lake… Click to show full abstract

Ebinur Lake Wetland is an understudied desert wetland ecosystem, particularly regarding nitrogen cycling. This study aimed to ascertain the diversity and richness of nitrogen-fixing bacterial communities in the Ebinur Lake Wetland. The diversity of the nitrogen-fixing bacteria community of nifH genes from the rhizosphere and non-rhizosphere soils of four plants in different seasons were examined using Illumina HiSeq PE250 high-throughput sequencing technology. The correlation between soil environmental factors and diversity and richness of nitrogen-fixing bacteria was studied using the redundancy analysis (RDA). The results showed that the diversity of nitrogen-fixing bacteria in the rhizosphere soil of the constructive plants was higher than that in the non-rhizosphere soil; also, the diversity in July was higher than that in October and April. Geobacter, Pseudomonas and Bradyrhizobium were the dominant common bacteria in different samples of Ebinur Lake Wetland. The RDA showed that the total nitrogen, available potassium and available phosphoruswere significantly correlated with the diversity and richness of nitrogen-fixing bacteria. The diversity and community structure of nitrogen-fixing bacteria in soil samples also changed over time. The community structures of nitrogen-fixing bacteria in the rhizosphere and non-rhizosphere soils of the four plants were not the same during the same period. The correlation between soil environmental factors and the community structure and abundance of nitrogen-fixing bacteria can provide data basis and theoretical support for the degradation and restoration of Ebinur Lake Wetland.

Keywords: nitrogen; fixing bacteria; nitrogen fixing; wetland; diversity; ebinur lake

Journal Title: Archives of microbiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.