LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ability to produce indole acetic acid is associated with improved phosphate solubilising activity of rhizobacteria.

Photo from wikipedia

Indole acetic acid (IAA) can upregulate genes encoding enzymes responsible for the synthesis of carboxylates involved in phosphorus (P) solubilisation. Here, we investigated whether IAA and its precursor affect the… Click to show full abstract

Indole acetic acid (IAA) can upregulate genes encoding enzymes responsible for the synthesis of carboxylates involved in phosphorus (P) solubilisation. Here, we investigated whether IAA and its precursor affect the P-solubilising activity of rhizobacteria. A total of 841 rhizobacteria were obtained using taxonomically selective and enrichment isolation methods. Phylogenetic analysis revealed 15 genera of phosphate solubilising bacteria (PSB) capable of producing a wide range of IAA concentrations between 4.1 and 67.2 µg mL-1 in vitro. Addition of L-tryptophan to growth media improved the P-solubilising activity of PSB that were able to produce IAA greater than 20 µg mL-1. This effect was connected to the drop of pH and release of a high concentration of carboxylates, comprising α-ketoglutarate, cis-aconitate, citrate, malate and succinate. An increase in production of organic acids rather than IAA production per se appears to result in the improved P solubilisation in PSB.

Keywords: phosphate solubilising; solubilising activity; indole acetic; activity rhizobacteria; acetic acid; activity

Journal Title: Archives of microbiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.