LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long-term survival of Chlamydomonas reinhardtii during conditional senescence.

Photo by paramir from unsplash

Chlamydomonas reinhardtii undergoes conditional senescence when grown in batch culture due to nutrient limitation. Here, we explored plastid and photo-physiological adaptations in Chlamydomonas reinhardtii during a long-term ageing experiment by… Click to show full abstract

Chlamydomonas reinhardtii undergoes conditional senescence when grown in batch culture due to nutrient limitation. Here, we explored plastid and photo-physiological adaptations in Chlamydomonas reinhardtii during a long-term ageing experiment by methodically sampling them over 22 weeks. Following exponential growth, Chlamydomonas entered an extended declining growth phase where cells continued to divide, although at a lower rate. Ultimately, this ongoing division was fueled by the recycling of macromolecules that was obvious in the rapidly declining protein and chlorophyll content in the cell during this phase. This process was sufficient to maintain a high level of cell viability as the culture entered stationary phase. Beyond that the cell viability starts to plummet. During the turnover of macromolecules after exponential growth that saw RuBisCO levels drop, the LHCII antenna was relatively stable. This, along with the upregulation of the light stress-related proteins (LHCSR), contributes to an efficient energy dissipation mechanism to protect the ageing cells from photooxidative stress during the senescence process. Ultimately, viability dropped to about 7% at 22 weeks in a batch culture. We anticipate that this research will help further understand the various acclimation strategies carried out by Chlamydomonas to maximize survival under conditional senescence.

Keywords: chlamydomonas reinhardtii; conditional senescence; long term; senescence; term survival

Journal Title: Archives of microbiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.