The Staphylococcus aureus bacteria is a Gram-positive, immobile, non-spore bacterium, with catalase and positive coagulase, among other characteristics. It is responsible for important infections caused in the population and for… Click to show full abstract
The Staphylococcus aureus bacteria is a Gram-positive, immobile, non-spore bacterium, with catalase and positive coagulase, among other characteristics. It is responsible for important infections caused in the population and for hospital infections. Because of that many strategies are being developed to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are found in parts of plants and can be found, for example, in the roots, leaves, bark, among others, but are mainly found as petal pigments, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities. This study aimed to evaluate the ability of chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one to reverse the efflux pump resistance, present in the bacteria S. aureus 1199B and S. aureus K2068. The synthetic chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was able to synergistically modulate the antibiotic Ciprofloxacino and Ethidium Bromide against the bacterial strain S. aureus K2068, and with the antibiotic Norfloxacino against the strain 1199B. Thus, it is suggested that this chalcone may be acting by inhibiting the efflux pump mechanism of these bactéria. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalocne did not present a severe risk of toxicity, such as genetic mutation or cardiotoxicity. Molecular docking showed that the chalcone could act as a competitive inhibitor of the MepA efflux pump, as at hinders the binding of other substrates, such as EtBr.
               
Click one of the above tabs to view related content.