LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

2,4-Dimethylaniline generates phosphorylated histone H2AX in human urothelial and hepatic cells through reactive oxygen species produced by cytochrome P450 2E1

Photo by bostonpubliclibrary from unsplash

The Japanese Ministry of Health, Labour, and Welfare recently reported an outbreak of bladder cancer among workers who handled aromatic amines in Japan. 2,4-dimethylaniline (2,4-DMA) is one of the chemicals… Click to show full abstract

The Japanese Ministry of Health, Labour, and Welfare recently reported an outbreak of bladder cancer among workers who handled aromatic amines in Japan. 2,4-dimethylaniline (2,4-DMA) is one of the chemicals that workers are considered to have the most opportunities to be exposed. Genotoxic events are known to be crucial steps in the initiation of cancer. However, studies on the genotoxicity of 2,4-DMA are limited, particularly studies investigating the mechanism behind the genotoxicity by 2,4-DMA are completely lacking. We examined genotoxic properties of 2,4-DMA using phosphorylated histone H2AX (γ-H2AX), a sensitive and reliable marker of DNA damage, in cultured human urothelial and hepatic cells. Our results clearly showed that 2,4-DMA at a concentration range of 1–10 mM generates γ-H2AX in both cell lines, indicating that 2,4-DMA is genotoxic. During mechanistic investigation, we found that 2,4-DMA boosts intracellular reactive oxygen species, an effect clearly attenuated by disulfiram, a strong inhibitor of cytochrome P450 2E1 (CYP2E1). In addition, CYP2E1 inhibitors and the antioxidant, N-acetylcysteine, also attenuated γ-H2AX generation following exposure to 2,4-DMA. Collectively, these results suggest that γ-H2AX is formed following exposure to 2,4-DMA via reactive oxygen species produced by CYP2E1-mediated metabolism. Continuous exposure to genotoxic aromatic amines such as 2,4-DMA over a long period of time may have contributed to the development of bladder cancer. Our results provide important insights into the carcinogenicity risk of 2,4-DMA in occupational bladder cancer outbreaks at chemical plants in Japan.

Keywords: reactive oxygen; histone h2ax; oxygen species; h2ax; phosphorylated histone

Journal Title: Archives of Toxicology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.