LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A locust embryo as predictive developmental neurotoxicity testing system for pioneer axon pathway formation.

Photo by rocinante_11 from unsplash

Exposure to environmental chemicals during in utero and early postnatal development can cause a wide range of neurological defects. Since current guidelines for identifying developmental neurotoxic chemicals depend on the… Click to show full abstract

Exposure to environmental chemicals during in utero and early postnatal development can cause a wide range of neurological defects. Since current guidelines for identifying developmental neurotoxic chemicals depend on the use of large numbers of rodents in animal experiments, it has been proposed to design rapid and cost-efficient in vitro screening test batteries that are mainly based on mixed neuronal/glial cultures. However, cell culture tests do not assay correct wiring of neuronal circuits. The establishment of precise anatomical connectivity is a key event in the development of a functional brain. Here, we expose intact embryos of the locust (Locusta migratoria) in serum-free culture to test chemicals and visualize correct navigation of identified pioneer axons by fluorescence microscopy. We define separate toxicological endpoints for axonal elongation and navigation along a stereotyped pathway. To distinguish developmental neurotoxicity (DNT) from general toxicity, we quantify defects in axonal elongation and navigation in concentration-response curves and compare it to the biochemically determined viability of the embryo. The investigation of a panel of recognized DNT-positive and -negative test compounds supports a rather high predictability of this invertebrate embryo assay. Similar to the semaphorin-mediated guidance of neurites in mammalian cortex, correct axonal navigation of the locust pioneer axons relies on steering cues from members of this family of cell recognition molecules. Due to the evolutionary conserved mechanisms of neurite guidance, we suggest that our pioneer axon paradigm might provide mechanistically relevant information on the DNT potential of chemical agents on the processes of axon elongation, navigation, and fasciculation.

Keywords: navigation; pioneer axon; locust; developmental neurotoxicity; pioneer

Journal Title: Archives of toxicology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.