LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Inviscid Limit of Navier–Stokes Equations for Analytic Data on the Half-Space

Photo from wikipedia

In their classical work, Sammartino and Caflisch (Commun Math Phys 192(2):433–461, 1998a; Commun Math Phys 192(2):463–491, 1998b) proved the inviscid limit of the incompressible Navier–Stokes equations for well-prepared data with… Click to show full abstract

In their classical work, Sammartino and Caflisch (Commun Math Phys 192(2):433–461, 1998a; Commun Math Phys 192(2):463–491, 1998b) proved the inviscid limit of the incompressible Navier–Stokes equations for well-prepared data with analytic regularity in the half-space. Their proof is based on the detailed construction of Prandtl’s boundary layer asymptotic expansions. In this paper, we give a direct proof of the inviscid limit for general analytic data without having to construct Prandtl’s boundary layer correctors. Our analysis makes use of the boundary vorticity formulation and the abstract Cauchy–Kovalevskaya theorem on analytic boundary layer function spaces that capture unbounded vorticity.

Keywords: inviscid limit; analytic data; stokes equations; limit; half space; navier stokes

Journal Title: Archive for Rational Mechanics and Analysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.